

VIDYA BHAWAN, BALIKA VIDYAPITH

Shakti Utthan Ashram, Lakhisarai-811311(Bihar)

(Affiliated to CBSE up to +2 Level)

CLASS: X

DATE: 05 -07-2020

SUB.: MATHEMATICS

Chapter 4:- Quadratic Equations

QUADRATIC EQUATIONS

The polynomial of degree two is called quadratic polynomial and equation corresponding to a quadratic polynomial P(x) is called a quadratic equation in variable x.

Thus,

 $P(x) = ax^2 + bx + c = 0$, $a \neq 0$, $a, b, c \in R$ is known as the standard form of quadratic equation.

There are two types of quadratic equation.

(i) Complete quadratic equation: The equation $ax^2 + bx + c = 0$ where $a \neq 0, b \neq 0, c \neq 0$ (ii) Pure quadratic equation: An equation in the form of $ax^2 = 0$, or $ax^2 + bx = 0$ where $a \neq 0, b = 0, c = 0$

ZERO OF A QUADRATIC POLYNOMIAL

The value of x for which the polynomial becomes zero is called zero of a polynomial.

For instance, 1 is zero of the polynomial $x^2 - 2x + 1$ because it became zero at x = 1.

SOLUTION OF A QUADRATIC EQUATION BY FACTORISATION

A real number x is called a root of the quadratic equation $ax^2 + bx + c = 0$, a 0 if $a\alpha^2 + b\alpha + c = 0$. In this case, we say $x = \alpha$ is a solution of the quadratic equation.

NOTE: -

1. The zeroes of the quadratic polynomial $ax^2 + bx + c$ and the roots of the quadratic equation $ax^2 + bx + c = 0$ are the same.

2. Roots of quadratic equation $ax^2 + bx + c = 0$ can be found by factorizing it into two linear factors and equating each factor to zero.

SOLUTION OF A QUADRATIC EQUATION BY COMPLETING THE SQUARE

By adding and subtracting a suitable constant, we club the x² and x terms in the quadratic equation so that they become complete square, and solve for x.

In fact, we can convert any quadratic equation to the form $(x + a)^2 - b^2 = 0$ and then we can easily find its roots.

ROOTS OF THE QUADRATIC EQUATION

Let the quadratic equation be $ax^2 + bx + c = 0$ (a $\neq 0$). Thus, if $b^2 - 4ac \ge 0$, then the roots of the quadratic $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ equation are given by

QUADRATIC FORMULA

 $\frac{-b\pm\sqrt{b^2-4ac}}{2a}$ is known as the quadratic formula which is useful for finding the roots of a quadratic equation.

DISCRIMINANT

The expression $b^2 - 4ac$ is called the discriminant of the quadratic equation.

NATURE OF ROOTS

(i) If $b^2 - 4ac > 0$, then the roots are real and distinct.

(ii) If $b^2 - 4ac = 0$, the roots are real and equal or coincident.

(iii) If b² — 4ac <0, the roots are not real (imaginary roots)

FORMATION OF QUADRATIC EQUATION WHEN TWO ROOTS ARE GIVEN

If α and β are two roots of equation then the required quadratic equation can be formed as $x^2 - (\alpha + \beta)x + \alpha\beta = 0$

NOTE :-

Let α and β be two roots of the quadratic equation $ax^2 + bx + c = 0$ then Sum of Roots: – the coefficient of x / the coefficient t of x^2 $\Rightarrow \alpha + \beta = -b / a$

Product of Roots :-

 $\alpha\beta$ = constant term / the coefficient t of $x^2 \Rightarrow \alpha\beta$ = c / a

SOLUTION OF A QUADRATIC EQUATION BY DISCRIMINANT METHOD Let quadratic equation is $ax^2 + bx + c = 0$

Step 1. Find D = b² — 4ac. **Step 2.**

(i) If D > 0, roots are given by $x = x = \frac{-b \pm \sqrt{D}}{2a}$

(ii) If D = 0 equation has equal roots and root is given by x = -b / 2a.

(iii) If D < 0, equation has no real roots.